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non-focusing nonlinear Schr̈odinger equation
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Department of Mathematics and Statistics, The University of Edinburgh, Edinburgh, UK

Received 19 May 1997

Abstract. A Crum transformation for the linear problem of the non-focusing nonlinear
Schr̈odinger (NLS) equation is used to construct the sequence of rational solutions, given in
terms of tau-functions expressed as double Wronskian determinants. The rational solutions
of the Adler–Kaup–Newell–Segur (AKNS) hierarchy have already been obtained in the work
of Sachs, using the equivalence with the classical Boussinesq hierarchy. However, we find
that Sachs’ description of the restrictions that must be placed on the AKNS tau-functions in
order to obtain NLS rational solutions is not entirely correct. We briefly comment on the
constrained Calogero–Moser systems associated with the NLS rational solutions, and indicate
how the Calogero–Moser equations can be obtained from a trilinear equation for the tau-function
which arises by reduction of the Kadomtsev–Petviashvili (KP) hierarchy.

1. Introduction

There has been a great deal of interest in the rational solutions of integrable nonlinear
evolution equations over the past 20 years. This began with studies of the rational solutions
of the Korteweg–de Vries (KdV) [1, 2] and KP [12, 21] equations, but soon similar results
were obtained concerning the Benjamin–Ono equation [4] and the classical Boussinesq and
AKNS systems [8, 18, 19], among others. An important feature of these rational solutions,
which has been further explored more recently [11, 20], is that the motion of their poles is
governed by Calogero–Moser systems (possibly with constraints [17]).

In the following we present a construction of rational solutions of the NLS equation

iψt +9xx + 2δ|ψ |2ψ = 0 (1.1)

in the non-focusing caseδ = −1. The focusing caseδ = +1 does not admit rational
solutions, as is explained in section 2.

Our reasons for considering such solutions are threefold. First, the original motivation
behind this work was to use a Crum transformation for the NLS equation (section 3) to
generate the sequence of rational solutions (section 4), in complete analogy to Adler and
Moser’s construction [1] for the KdV equation. Second, although rational solutions of the
NLS equation have been considered before, there are certain errors and omissions in the
literature. Hirota and Nakamura [8], found a sequence of rational solutions to the non-
focusing NLS equation by exploiting a connection with a bilinear Bäcklund transformation
(BT) for the classical Boussinesq (cB) system,

ut = ((1+ u)v − vxx)x
† E-mail address: hone@maths.ed.ac.uk
‡ Current address: Dipartimento di Fisica, Università degli Studi. ‘Roma Tre’, Roma, Italy.
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vt = (u+ 1
2v

2)x (1.2)

where only rational similarity solutions (depending just onx, t) were considered. Sachs
gave an exhaustive description of the rational solutions of the cB hierarchy in [18], and
also described (with more details in [19]) the rational solutions of the AKNS hierarchy,
by using the equivalence of these two hierarchies. Some of these AKNS rational solutions
reduce to give rational solutions of the NLS hierarchy. However, contrary to the statement
in [19], we find that only the non-focusing NLS hierarchy has rational solutions (section 2),
and these depend on all the times of the hierarchy. Our third reason for considering these
rational solutions was to see how they fit into the framework of the NLS as a reduction
of the KP hierarchy [14]. In this picture, the rational solutions are characterized by a
single polynomial tau-function satisfying the trilinear equation of [6], and the zeros of this
tau-function satisfy constrained Calogero–Moser systems (briefly considered in section 5).

2. Reduction from AKNS

2.1. AKNS and NLS

In the form (1.1), the equation NLS is really two different equations describing different
physical behaviours: the focusing and non-focusing NLS equations, corresponding to
δ = +1 and δ = −1, respectively. Both these cases may be obtained from the AKNS
system

qt2 = qxx + 2q2r rt2 = −rxx − 2qr2 (2.1)

upon settingt2 = it , q = ψ and r = δψ (for real x, t). (Throughout we useQ to denote
the complex conjugate of a quantityQ, unless it is explicitly stated thatQ andQ are
independent.) Thus the two different NLS equations give solutions to the AKNS system
with particular reality conditions. In [16], Previato derived the hyperelliptic quasiperiodic
solutions of the AKNS system using algebraic geometry, and then studied the reality
conditions corresponding toδ = ±1, showing how certain limits of these solutions gave the
N -soliton formulae found by Hirota [7] using his bilinear formalism.

The solutions of the focusing and non-focusing NLS equations are of a very different
character. For example, only the non-focusing case of (1.1) has scaling similarity solutions
expressible in terms of the fourth Painlevé transcendent [3]. This difference can be seen
directly from Painlev́e analysis [5, 13]. Expanding around a singular manifoldφ(x, t) in
(1.1), it is found thatψ must take the form

ψ(x, t) = φ−1
∞∑
n=0

un(x, t)φ
n (2.2)

where the leading term satisfies

|u0|2 = −δφ2
x .

Clearly only the non-focusing case can have a real singular manifold functionφ. To show
that rational solutions may only occur in this case, we now consider the Hirota bilinear form
of the NLS equation.

Remark. The Crum transformation described in section 3 may be obtained by truncating
the Painlev́e expansion (2.2) to giveψ = u0/φ + u1, which should be compared with
equation (3.6) below. There are many intimate connections between BTs, truncated Painlevé
expansions and Hirota bilinear equations (see [5, 10]).
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2.2. Bilinear form and polynomial tau-functions

Our construction of rational solutions in section 4 is greatly facilitated by the introduction
of the bilinear form of the NLS equation. The dependent variableψ is given as a ratio of
two tau-functions,

ψ = g

f
(2.3)

with f real, and then the NLS equation (1.1) may be separated into a pair of bilinear
equations,

(iDt +D2
x)g · f = 0 (2.4)

D2
xf · f − 2δ|g|2 = 0. (2.5)

Up to rescalings of the timesτj , the higher equations in the NLS hierarchy [13] can be
written in bilinear form as

(iDτj+1 +DτjDx)g · f = 0. (2.6)

This includes (2.4) with the identificationsx = τ1, t = τ2. Clearly the complex conjugate
of (2.6) must also hold (for realτj ), and then the bilinear equations of the AKNS hierarchy
arise wheng and its conjugatēg are regarded as independent tau-functions.

To describe the rational solutions we find it helpful to denote the Wronskian ofn

functionsa1, a2, . . . , an by

[a1, a2, . . . , an] :=

∣∣∣∣∣∣∣∣
a1 a2 . . . an
a1,x a2,x . . . an,x
...

...
. . .

...

a1,(n−1)x a2,(n−1)x . . . an,(n−1)x

∣∣∣∣∣∣∣∣ .
We also require the sequence of Schur polynomialspj for j = 0, 1, 2, . . . , defined by

exp[ξ(t, ν)] =
∞∑
j=0

pj (t)ν
j ξ(t, ν) =

∞∑
j=1

tJ ν
j t1 = x.

From this definition it is simple to show the following:

∂kpj

∂xk
= pj−k = ∂pj

∂tk
. (2.7)

In [8] Hirota and Nakamura used the substitutions

u = −1− 2(log[FF ])xx v = 2i(log[F/F ])x

writing the cB system (1.2) in bilinear form:

(iDt +D2
x)F · F = 0 (iDtDx +D3

x)F · F = 0.

Hirota and Nakamura gave a bilinear Bäcklund transformation (BT) for this conjugate pair
of tau-functionsF,F , and proceeded to show that given another pairF ′, F

′
related by the

BT, tau-functions for the non-focusing NLS equation may be constructed from the formulae

f 2 = 1
2(FF

′ + F ′F) gf = 1
2(DxF · F ′). (2.8)

The bilinear BT is used in [8] to construct a sequence of rational solutions (‘explode-decay’
solitons) to (1.2), and it is proved in [9] that the polynomial tau-functionsF,F may be
written as Wronskians of Hermite polynomials in the similarity variablez = x/t 1

2 . However,
it is still not apparent from the substitutions (2.8) that the associated NLS tau-functions are
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polynomials. In section 4 we show that in fact the expressions (2.8) arise naturally from
the Crum transformation.

In the work of Sachs, the cB hierarchy is considered without the particular reality
conditions taken in [8] regardingF,F as independent tau-functions. It was shown in [18]
that the general rational solution of the cB hierarchy has tau-functions of the form

F = [pn, pn−1, . . . , pn−k] F = [pn, pn−1, . . . , pn−k+1]

where k and n are integers with 06 k 6 n, and x = t1, t2, t3, . . . are the times of
the hierarchy. The scaling similarity solutions of [8] correspond to the particular choice
n = 2k, upon settingt2 = it andt3 = t4 · · · = 0. Also, using the fact that the cB and AKNS
hierarchies are equivalent, it was shown [18, 19] that the most general rational solution of
the AKNS hierarchy has tau-functions in the form of double Wronskians,

f = [pn, . . . , pn−k] g = [pn, . . . , pn−k−1] g = [pn, pn−1, . . . , pn−k+1] (2.9)

(regardingg and g as independent). Making the reduction to the NLS hierarchy requires
that f must be real andg andg must be complex conjugates (and thus in particular they
must be of the same degree inx). A simple check of the degrees of the Wronskians (2.9)
shows that for this reduction it is necessary to taken = 2k + 1, in agreement with [19].
However, it is further stated in [19] that this reduction is consistent for both valuesδ = ±1,
and that for consistency it is necessary to set the odd times to zero (t3 = t5 = · · · = 0),
which is not correct.

To see why the focusing NLS equation cannot have rational solutions, one need only
consider the bilinear equation (2.5), which (from (2.3)) clearly entails

|ψ |2 = δ(log[f ])xx. (2.10)

Note that in (2.3) there is always the freedom to rescalef and g by the same arbitrary
constant. Thus, without loss of generality, when considering rational solutions of the NLS
equation we may takef to be a monic polynomial inx, so that

f =
N∏
j=1

(x − xj (t)) g =
M∏
J=1

(x − yJ (t)) (2.11)

for some constantκ (with t denoting the sequence of times of the hierarchy). Substituting
these polynomials into (2.10) and multiplying through by the common denominatorf 2

yields

|κ|2
M∏
J=1

(x − yJ )(x − yJ ) = −δ
N∑
j=1

∏
k 6=j
(x − xk)2. (2.12)

Comparing the terms of highest degree inx on either side of (2.12) implies immediately
thatM = N − 1 and that|κ|2 = −δN , forcing δ = −1. The conditionM = N − 1 can be
checked directly for the Wronskians (2.9) withn = 2k+1, and it is found thatN = (k+1)2.
The construction presented in section 4 provides a direct proof that these Wronskians satisfy
the necessary reality conditions for the non-focusing NLS equation, and that it is consistent
to include all the flows of the hierarchy.

3. NLS Crum transformation

The non-focusing NLS equation arises as the zero curvature condition for the linear system(
χ1

χ2

)
x

=
(−iλ ψ

ψ iλ

)(
χ1

χ2

)
(3.1)
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χ1

χ2

)
t

=
(−i(|ψ |2+ 2λ2) iψx + 2λψ
−iψx + 2λψ i(|ψ |2+ 2λ2)

)(
χ1

χ2

)
. (3.2)

Henceforth we shall only consider thex part (3.1), and make the consistent choice

χ1 = χ χ2 = χ
leading to

χx = −iλχ + ψχ (3.3)

for λ real. By a slight abuse of language, we shall refer toχ as the ‘eigenfunction’ andψ
as the ‘potential’ in (3.3).

To describe the Crum transformation for the system (3.3) requires a real singular
manifold functionφ, obtained via

φx = |χ |2. (3.4)

Now we can define a new eigenfunction

χ∗ = χ

φ
.

It is easy to see thatX = χ∗ is a solution to the equation

Xx = −iλX + ψ̃X (3.5)

with the new potential

ψ̃ = ψ − χ
2

φ
. (3.6)

Equation (3.6) may be regarded as a truncation of the expansion (2.2).
Having obtainedψ̃ from ψ by one application of the Crum transformation for (3.3),

a sequence of such potentials may be obtained by applying it repeatedly. A new singular
manifold functionφ∗ can be found fromφ∗x = |v∗|2, but up to a constant we must have
φ∗ = −φ−1, and so applying the same transformation again just leads back to the original
potentialψ . Thus to get anything new requires a new eigenfunctionχ ′ satisfying (3.5),
such thatχ ′ andχ∗ are linearly independent (over the reals). It may be checked that the
determinant

W̃ [χ ′, χ∗] := (2i)−1

∣∣∣∣χ ′ χ∗

χ ′ χ∗

∣∣∣∣ (3.7)

is constant for any two solutions of (3.5), and non-zero when they are independent. In the
next section we apply the Crum transformation to obtain the sequence of rational solutions
of the non-focusing NLS equation, and use the quantityW̃ to normalize the eigenfunctions
in a particular way.

Remark. A similar Crum transformation has been used to generate soliton solutions of the
Davey–Stewartson equation in [22].

4. Sequence of rational solutions

4.1. Application of Crum transformation

We proceed to construct a sequence of rational functionsψk for k = 0, 1, 2, . . . by repeated
application of the Crum transformation with the eigenvalueλ = 0, starting from the vacuum
ψ0 = 0. Carrying out all the manipulations in bilinear form leads to the following.
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Proposition 1. Repeated application of the Crum transformation for (3.5) with eigenvalue
λ = 0, starting from the vacuum potentialψ0 = 0, is equivalent to repeatedly solving the
bilinear equations

Dxhk · fk = hkgk (4.1)

hkhk−1− hkhk−1 = 2i
√
(2k − 1)(2k + 1)f 2

k (4.2)

Dxfk+1 · fk = |hk|2 (4.3)

gk+1fk − gkfk+1 = −h2
k (4.4)

starting from the initial conditionsf0 = 1, h0 = i. The sequence of potentialsψk, the
singular manifold functionsφk and the pairs of eigenfunctionsχ∗k , χk are given by

ψk = gk

fk
φk = fk+1

fk
χ∗k =

hk−1

fk
χk = hk

fk
(4.5)

where

|ψk|2 = −(log[fk])xx. (4.6)

Proof. First we considerk = 0. Settingf0 = 1, h0 = i in (4.1) givesg0 = 0, so that
ψ0 = 0. Integrating (3.4) withχ0 = h0/f0 givesφ0 = f1/f0 = x + τ1, with τ1 constant,
and this is the same as solving (4.3) forf1. As usual we neglect the translation inx and
take f1 = x. From (3.6) or from (4.4) the new potential is found to beψ1 = 1/x, with
g1 = 1. The proof proceeds by a simple induction. With the substitutions (4.5), it is clear
that (4.1) is equivalent toχ = χk being an eigenfunction for the linear problem (3.5) with
potentialψ = ψk and eigenvalueλ = 0. Similarly (4.3) is equivalent to (3.4), and (4.4)
is equivalent to (3.6). It is also straightforward to show (using (4.1), (4.3) and (4.4) with
k→ k − 1) thathk−1 satisfies

Dxhk−1 · fk − hk−1gk (4.7)

which implies thatχ∗k is another eigenfunction for (3.5) with potentialψk; comparison with
(3.7) shows that (4.2) is just the normalization conditionW̃ [χk, χ∗k ] = √(2k − 1)(2k + 1)
for the independent pair of eigenfunctions. Equation (4.6), which is equivalent to the bilinear
(2.5) for δ = −1, also follows inductively by calculating expressions forφk,x andφk,xx . �

Implementing the Crum transformation algorithmically requires two integrations and
solving one algebraic equation at each step. Indeed, a consequence of (4.1), (4.2) and (4.7)
is the bilinear

Dxhk · hk−1 = −2i
√
(2k + 1)(2k − 1)fkgk. (4.8)

It follows that givenhk−1, fk, gk found byk applications of the Crum transformation in the
form (4.1)–(4.4), the new tau-functionhk may be obtained by integrating(

hk

hk−1

)
x

= −2i
√
(2k + 1)(2k − 1)

fkgk

h2
k−1

.

The constant of integration, which we denote
√
(2k + 1)(2k − 1)τ2k, is just the arbitrary

real multiple ofhk−1 that may be added tohk. Next, (using (4.3) or (3.4)) the tau-function
fk+1 is found by integrating(

fk+1

fk

)
x

= |hk|
2

f 2
k

.

Similarly, an arbitrary real multiple offk can be added tofk+1, and we denote this second
constant of integration byτ2k+1. Finally, (4.4) is rearranged to solve forgk+1. As is the case
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for the KdV equation [1], when applying the Crum transformation for the rational solutions
the constants of integrationτj correspond to the times of the hierarchy. A slightly tedious
direct calculation shows that for each new pair of timesτ2k, τ2k+1 we have

(2i(2k + 1)(2k − 1)Dτ2k+1 +DxDτ2k )gk+1 · fk+1 = 0

which is the binilear form of the(2k + 1)th flow of the NLS hierarchy (identical to (2.6)
after a rescaling).

We list the first few tau-functions found from the Crum transformation:

f0 = 1 f1 = x f2 = x4+ τ3x − 3τ 2
2

f3 = x9+ 6τ3x
6− 18τ 2

2x
5+ τ5x

4− 60τ2τ4x
3+ 90τ 2

2 τ3x
2+ (τ3τ5− 135τ 4

2 − 15τ 2
4 )x

+30τ2τ3τ4− 5τ 2
3 − 3τ 2

2 τ5

g0 = 0 g1 = 1 g2 = −2x3+ 6iτ2x + τ3

g3 = 3x8− 24iτ2x
6+ 6τ3x

5− 30(3τ 2
2 + iτ4)x

4− 2(τ5− 30iτ2τ3)x
3+ 30τ 2

3x
2

+(−90τ 2
2 τ3+ i(6τ2τ5− 30τ3τ4))x + 135τ 4

2 + τ3τ5− 15τ 2
4

+30i(τ2τ
2
3 − 3τ 2

2 τ4)

h0 = i h1 = −
√

3(x2− iτ2)

h2 = −i
√

5

(
x6− 3iτ2x

4+ 2τ3x
3− (9τ 2

2 + 3iτ4)x
2

+6iτ2τ3x + τ 2
3 − 3τ2τ4− 9iτ 3

2

)
.

After settingτ2 = 2t andτj = 0 for j 6 3, these agree with the tau-functions for similarity
solutions found in [8]. Note that the particular normalization used here was chosen to make
the fk monic polynomials inx. To prove that all the tau-functions generated by this Crum
transformation are polynomials, we must now show that they are proportional to double
Wronskians of Schur polynomials (thus making contact with the formulae of Sachs [18]).

Remark. Upon multiplying eitherhn−1 or hn by i and rescaling, the equations (4.2) and
(4.8) are identical to the formulae (2.8) obtained by Hirota and Nakamura [8].

4.2. Wronskian formulae

We now introduce Wronskians of the form (2.9):

Fk = [p2k−1, . . . , pk] Gk = [p2k−1, . . . , pk−1] Gk = [p2k−1, . . . , pk+1]
Hk = [p2k, . . . , pk] Hk = [p2k, . . . , pk+1].

It will turn out that the complex conjugate ofGk (respectively,Hk) is equal toGk

(respectively,Hk) up to a minus sign, but to see this we must first show the following.

Proposition 2. The double Wronskians satisfy rescaled versions of (4.1)–(4.4), i.e.

DxHk · Fk = HkGk DxFk+1 · Fk = HkHk (4.9)

HkHk−1−HkHk−1 = −F 2
k Gk+1Fk −GkFk+1− = H 2

k . (4.10)

The ‘conjugate’ equations, obtained by swappingGk withGk, andHk withHk (and inserting
a minus sign where necessary), are also satisfied.

Proof. Using the property (2.7) of Schur polynomials, the first equation in (4.9) is
equivalent to

[p2k, . . . , pk+1, pk−1] · [p2k−1, . . . , pk] − [p2k, . . . , pk] · [p2k−1, . . . , pk+1, pk−1]
−[p2k−1, . . . , pk−1] · [p2k−1, . . . , pk+1] = 0. (4.11)
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To see why (4.11) must hold, observe that it is just the Laplace expansion in the first (k+1)
rows of the determinant

p2k
...

pk

p2k−1
...

pk−1

. . .

. . .

. . .

pk+1
...

p1

pk
...

p0

pk−1
...

0
0

p2k
...

pk+1

0

pk
...

p1

pk−1
...

p0

p2k−1
...

pk

. . .

. . .

. . .

pk+1
...

p2

. (4.12)

It is straightforward to show that (4.12) vanishes, and the Laplace expansion of a similar
determinant yields the second equation in (4.9). The first equation in (4.10) follows from
the Laplace expansion of the determinant

p2k
...

pk+1

pk

p2k−1
...

pk
pk−1

. . .

. . .

. . .

. . .

pk+1
...

p2

p1

pk
...

p1

p0

0
...

0
1

0

p2k−1
...

pk+1

pk

0

pk−1
...

p1

p0

0
...

0
1

p2k−2
...

pk
pk−1

. . .

. . .

. . .

. . .

pk
...

p2

p1

and similarly for the second equation in (4.10) and the ‘conjugates’. �

An immediate consequence of the above is that the tau-functions found via the Crum
transformation (as in proposition 1) must be proportional to the double Wronskians, provided
that the constants of integrationτj can be identified with thetj . A direct comparison shows
that

fk = (−)[k/2] k!

(2k)!
c(k)Fk gk = (−)k+1+[(k+1)/2] (2k − 1)!

(k − 1)!
c(k − 1)Gk

gk = (−)k+1+[(k+1)/2] (2k − 1)!

(k − 1)!
c(k − 1)Gk

hk = (−)[(k+1)/2] ik+1
√

2k + 1c(k)Hk hk = (−)[k/2](−i)k+1
√

2k + 1c(k)Hk

where

c(k) :=
k∏

j=0

(k + j)!
j !

and

t2k = (−)k+1 (k − 1)!k!

(2k − 2)!(2k)!
iτ2k t2k+1 = (−)k (k!)2

(2k)!(2k + 1)!
τ2k+1.

It then follows from the general results of [18, 19] that, subject to the above reality conditions
on the timestj , the gk, fk generated by the Crum transformation are tau-functions of the
(non-focusing) NLS hierarchy, and thehk, hk are tau-functions of the cB hierarchy.
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5. Trilinear form and Calogero–Moser

While solutions of the NLS equation are commonly given in terms of a pair of tau-functions
g, f satisfying bilinear equations, if trilinear equations are employed then these solutions
can also be (almost completely) characterized by the single tau-functionf . Starting
from the coupled equations for the modulus-squaredw and phaseγ of ψ (i.e. writing
ψ = w 1

2 exp[iγ ]), and introducing the variableη = −2wγx , the NLS equation (1.1) (taking
δ = −1) leads to the system

wt = ηx (5.1)

ηt =
(

2w2− wxx + w
2
x + η2

w

)
x

. (5.2)

Note that the phaseγ is only determined byη up to a function oft . Defining3 = log[f ],
we see that (4.6) is equivalent to

w = −3xx

so that we may integrate first (5.1) to find

η = −3xt

and then (5.2) to obtain

3tt3xx −32
xt −32

3x + 233
xx +3xx34x = 0. (5.3)

Both arbitrary functions oft occurring in the integration are consistently absorbed intof .
Multiplying through byf 3 in (5.3) yields the trilinear form∣∣∣∣∣ f fx ft
fx fxx fxt
ft fxt ftt

∣∣∣∣∣+
∣∣∣∣∣ f fx fxx
fx fxx f3x

fxx f3x f4x

∣∣∣∣∣ =
∣∣∣∣∣p
+
0 p
−
0 (τ ) p+0 p

−
1 (τ ) p+0 p

−
2 (τ )

p+1 p
−
0 (τ ) p+1 p

−
1 (τ ) p+1 p

−
2 (τ )

p+2 p
−
0 (τ ) p+2 p

−
1 (τ ) p+2 p

−
2 (τ )

∣∣∣∣∣ = 0. (5.4)

This is the trilinear form of the Kaup–Broer system [6], which is equivalent to the AKNS
system (2.1). The second expression in (5.4) is the form of the equation used in [14],
with the operatorsp±j = pj (±∂̃), ∂̃ = (∂x, 1

2∂t2,
1
3∂t3, . . .); it is equal to the first expression

when we identifyτ = f, t2 = it . It is shown in [14] that the AKNS hierarchy arises by
constraining the Lax operator of the KP hierarchy to be

L = ∂x + q∂−1
x r

whereq, r are the wavefunction and adjoint wavefunction, respectively. This is known as
the generalized 1-constraint, and puts trilinear constraints on the KP tau-functionτ .

The bilinear KP hierarchy has solutions given by tau-functions expressed as Wronskian
determinants [15]. Double Wronskians of a particular form [6] give solutions to (5.4); the
polynomial tau-functions we have considered are particular examples of these. Rational
solutions of the KP hierarchy are associated with Calogero–Moser particle systems [20],
and thus the trilinear equation puts constraints on these systems. Substituting a polynomial
tau-functionf (2.11) into (5.3) yields a partial fraction expansion around the polesx = xj .
The coefficients of(x − xj )−3 give the Calogero–Moser equations

ẍj = 8
∑
k 6=j
(xj − xk)−3 (5.5)

(with dot denoting∂t ). The coefficients of the(x − xj )−2 and (x − xj )−1 terms lead to
complicated constraints [10] on the first derivativesẋj ; a natural interpretation for these
constraints is lacking, but we intend to consider them elsewhere. Alternatively, substituting
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the polynomials (2.11) into the bilinear equation (2.4) leads to a coupled first-order system
for the polesxj and zerosyJ of ψ , further constrained by (2.12). It is straightforward to
show that this first-order system decouples into two Calogero–Moser systems, i.e. (5.5) and

ÿJ = 8
∑
K 6=J

(yJ − yK)−3.

There are similar constrained, coupled Calogero–Moser systems associated with the rational
solutions of the cB hierarchy [17, 18].

We have also observed [10] that some of the similarity solutions of the NLS equation
considered in [3] correspond to solutions of (5.4) of the form

f = exp[p(x, t)]
N∏
j=1

(x − xj (t))

wherep is a quartic polynomial inx. Tau-functions of this form yield the non-decreasing
rational solutions of KP considered by Veselov [21], and are also associated with systems
of Calogero–Moser type.

6. Conclusions

We have shown how a Crum transformation may be used to construct the rational solutions
of the non-focusing NLS hierarchy, in analogy with the construction used by Adler and
Moser [1] for the KdV equation. At the same time, we have found a natural derivation of
the formulae (2.8) found by Hirota and Nakamura in connection with a bilinear BT [8] for
the cB system (1.2). In applying our construction, we have also noted that Sachs’ description
[19] of the reduction from AKNS rational solutions contains two errors: first, the focusing
NLS equation does not admit rational solutions; and second, it is not necessary to set the odd
times t3, t5, . . . to zero. We have also briefly considered the constrained Calogero–Moser
systems associated with the poles and zeros of the NLS rational solutions. In particular,
the pole motion is characterized by a trilinear equation (5.4) arising by reduction of the KP
hierarchy; we hope to explore this further elsewhere.
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